دانلود مقاله تحقیق پایان نامه

دانلود پایان نامه فرایند پواسون، تبدیل فوریه

2-3-2 تعریف(فرایندهای تبعی): هر فرایند لوی یک بعدی که با احتمال یک غیرنزولی باشد ، یک فرایند تبعی نامیده می شود . برای این فرایندها ، تبدیل فوریه ی تعریف کننده ی تابع مشخصه را می توان ادامه ی تحلیلی داد تا تبدیل لاپلاس آن به صورت
به دست آید. که در آن [do_widget id=kl-erq-2]
در اینجا ، و یک اندازه ی لوی است با این ویژگی که و
(تابع را نمای لاپلاس فرایند تبعی می نامند). [8و24]
یک کاربرد مهم فرایندهای تبعی در تغییر مقیاس زمانی فرایندهای لوی است.
2-3-3 قضیه: فضای احتمال را در نظر می گیریم. اگر یک فرایند لوی با نمای مشخصه ی و یک فرایند تبعی مستقل از با نمای لاپلاس و سه تایی باشد ، آن گاه فرایند
یک فرایند لوی می باشد که تابع مشخصه ی آن
است و دارای سه تایی مشخصه ی با
است که در آن ها توزیع احتمال است.[24]
روش ارائه شده در قضیه ی بالا ، اولین بار در دهه ی 1950 توسط بوخنر مطالعه گردید و به این دلیل گاهی آن را به افتخار او « تبعی سازی به معنای بوخنر » می نامند.[1]
دو نوع از فرایندهای لوی ، که دارای کاربرد زیادی در مدل های مالی دارای پرش هستند را در ادامه بررسی خواهیم
کرد: گروه اول، مدل های از نوع دیفیوژن پرشی و گروه دوم ، مدل های با فعالیت نامتناهی.
2-3-4 تعریف(مدل های از نوع دیفیوژن پرشی): این مدل ها، یک فرایند لوی با یک مولفه ی گاوسی غیر صفر و بخش پرشی با پرش های متناهی هستند و دارای فرم زیر هستند:
که در آن ها هم توزیع و مستقل از یکدیگرند، مولفه ی گاوسی و یک فرایند پواسون و مستقل از ها است. از جمله خواص مهم این نوع مدل ها این است که ، توزیع اندازه پرش های آنها شناخته شده است.[24]
مدل مرتون، یک مدل دیفیوژن پرشی است[24]: پرش های در ارزش- لگاریتمی دارای توزیع لگاریتمی است یا به عبارت دیگر و چگالی احتمال به صورت
2-3-5 تعریف(مدل های با فعالیت نامتناهی یا با نرخ نامتناهی): این مدل ها لزوماً دارای مولفه ی حرکت براونی نیستند و در هر بازه تعداد نامتناهی پرش وجود دارد. در این نوع مدل ها، توزیع اندازه ی پرش ها وجود ندارد و فرم بسته ی چگالی آن ها در بعضی از موارد در دسترس است[24].
مدل واریانس گاما، یک مدل با فعالیت نامتناهی است[24]. فرایند واریانس گاما از تبعی نمودن حرکت براونی با تبعی کننده ی گاما به دست می آید .( در واقع با جایگزین کردن فرایند گاما به جای زمان در ) تابع مشخصه یا نمای مشخصه ی این مدل به صورت زیر است:
که در آن تلاطم ، رانش حرکت براونی و واریانس تبعی کننده ی آن(یعنی واریانس فرایند گاما) می باشند و همچنین چگالی اندازه ی لوی این مدل به صورت زیر
نمایش داده می شود، جایی که c= و

هنگامی که توزیع تغییرات یا پرش های یک فرایند لوی ناشناخته باشد دانش دقیقی از تصویر مسیرهای نمونه ای آن در دست نیست. . در واقع با یک مدل با فعالیت نامتناهی روبرو هستیم ، که در این حالت ، این مدل را می توان با یک فرایند پواسون ترکیبی تقریب زد .
گیریم یک فرایند لوی با فعالیت نامتناهی باشد ، که دارای سه تایی مشخصه ی است . هدف ، پیدا کردن یک فرایند پواسون ترکیبی است، که فرایند اولیه ی را تقریب می زند. البته این تقریب تحت برخی حالت های خاص به دست خواهد آمد.

]]>